资源类型

期刊论文 45

年份

2023 13

2022 3

2021 7

2020 3

2019 1

2018 5

2017 6

2015 2

2014 1

2013 1

2012 1

2008 1

2007 1

展开 ︾

关键词

Al@AP/PVDF纳米复合材料 1

Cu(In 1

Ga)Se2 1

Nd-Fe-B磨削油泥 1

PDT 1

亚稳态分子间复合材料 1

内部取代BN 1

再生烧结磁体 1

含钒钢渣 1

吸附脱硫 1

固溶体 1

富稀土合金掺杂 1

富集 1

晶体生长 1

氧化石墨烯 1

氧掺杂 1

燃烧性能 1

碱金属 1

聚合物基合成策略 1

展开 ︾

检索范围:

排序: 展示方式:

Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution

Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1134-1146 doi: 10.1007/s11705-020-2014-x

摘要: The exploration of cost-effective, high-performance, and stable electrocatalysts for the hydrogen evolution reaction (HER) over wide pH range (0–14) is of paramount importance for future renewable energy conversion technologies. Regulation of electronic structure through doping vanadium atoms is a feasible construction strategy to enhance catalytic activities, electron transfer capability, and stability of the HER electrode. Herein, V-doped NiCoP nanosheets on carbon fiber paper (CFP) (denoted as V -NiCoP/CFP) were constructed by doping V modulation on NiCoP nanosheets on CFP and used for pH-universal HER. Benefiting from the abundant catalytic sites and optimized hydrogen binding thermodynamics, the resultant V -NiCoP/CFP demonstrates a significantly improved HER catalytic activity, requiring overpotentials of 46.5, 52.4, and 85.3 mV to reach a current density of 10 mA·cm in 1 mol·L KOH, 0.5 mol·L H SO , and 1 mol·L phosphate buffer solution (PBS) electrolytes, respectively. This proposed cation-doping strategy provides a new inspiration to rationally enhance or design new-type nonprecious metal-based, highly efficient, and pH-universal electrocatalysts for various energy conversion systems.

关键词: hydrogen evolution reaction     transition metal phosphides     pH-universal     vanadium doping     carbon fiber paper    

Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent

Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 902-912 doi: 10.1007/s11705-019-1887-z

摘要: High-manganese containing vanadium wastewater (HMVW) is commonly produced during the vanadium extraction process from vanadium titano-magnetite. HMVW cannot be reused and discharged directly, and is harmful to the environment and affect product quality due to heavy metals in the wastewater. The wastewater is usually treated by lime neutralization, but valuable metals (especially V and Mn) cannot be recovered. In this study, an efficient and environmentally friendly method was developed to recover valuable metals by using a solvent extraction-precipitation process. In the solvent extraction process, 98.15% of vanadium was recovered, and the V O product, with a purity of 98.60%, was obtained under optimal conditions. For the precipitation process, 91.05% of manganese was recovered as MnCO which meets the III grade standard of HG/T 2836-2011. Thermodynamic simulation analysis indicated that MnCO was selectively precipitated at pH 6.5 while Mg and Ca could hardly be precipitated. The results of X-ray diffraction and scanning electron microscopy demonstrated that the obtained V O and MnCO displayed a good degree of crystallinity. The treated wastewater can be returned for leaching, and resources (V and Mn) in the wastewater were utilized efficiently in an environmentally friendly way. Therefore, this study provides a novel method for the coextraction of V and Mn from HMVW.

关键词: high-manganese containing vanadium wastewater     solvent extraction     carbonate precipitation     vanadium titano-magnetite     valuable metal recovery    

Mechanical properties of vanadium-alloyed austempered ductile iron for crankshaft applications

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0746-2

摘要: This study focused on the development of austempered ductile iron (ADI) with desirable combination of mechanical properties for crankshaft applications by the combined effect of vanadium (V) alloying and an optimized heat treatment process. The produced unalloyed GGG60, 0.15% V-alloyed GGG60 (V-15), and 0.30% V-alloyed GGG60 samples were subjected to austenitizing at 900 °C for 1 h and subsequent austempering processes at 250, 300, and 350 °C for 15, 30, 60, 90, and 180 min. As a result of these austempering processes, different bainitic structures were obtained, which led to the formation of diverse combinations of mechanical properties. The mechanical properties of the austempered samples were tested comprehensively, and the results were correlated with their microstructures and the stability of the retained austenite phases. From the microstructural observations, the V-alloyed samples exhibited a finer microstructure and a more acicular ferrite phase than unalloyed samples. The V addition delayed the coarsening of the acicular ferrite structures and considerably contributed to the improvement of the mechanical properties of GGG60. Moreover, the X-ray diffraction results revealed that the retained austenite volume and the carbon enrichment of austenite phases in ADI samples were remarkably affected by the addition of vanadium. The increase in volume fraction of retained austenite and its carbon content provided favorable ductility and toughness to V-15, as confirmed by the elongation and impact test results. Consequently, the dual-phase ausferrite microstructure of V-15 that was austempered at 300 °C for 60 min exhibited high strength with substantial ductility and toughness for crankshaft applications.

关键词: austempered ductile iron (ADI)     vanadium alloying     mechanical properties     crankshafts     retained austenite    

Highly efficient and selective removal of vanadium from tungstate solutions by microbubble floating-extraction

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 581-593 doi: 10.1007/s11705-022-2235-2

摘要: Selective separation of dissolved tungsten and vanadium is of great significance for the utilization of the secondary resources of these elements. In this work, selective removal of vanadium from tungstate solutions via microbubble floating-extraction was systematically investigated. The results indicated that vanadium can be more easily mineralized over tungsten from tungstate solutions using methyl trioctyl ammonium chloride as mineralization reagent under weak alkaline conditions. Owing to the higher bubble and interface mass transfer rates, high-efficiency enrichment and deep separation of vanadium could be achieved easily. Additionally, the deep recovery of tungsten and vanadium from the floated organic phase could be easily realized using a mixed solution of sodium hydroxide and sodium chloride as stripping agents. The separation mechanism mainly included the formation of hydrophobic complexes, their attachment on the surface of rising bubbles, and their mass transfer at the oil–water interface. Under the optimal conditions, the removal efficiency of vanadium reached 98.5% with tungsten loss below 8% after two-stage microbubble floating-extraction. Therefore, the microbubble floating-extraction could be an efficient approach for separating selectively vanadium from tungstate solutions, exhibiting outstanding advantages of high separation efficiency and low consumption of organic solvents.

关键词: tungsten     vanadium     selective separation     reagent mineralization     microbubble floating-extraction    

Effect of metal ion-doping on characteristics and photocatalytic activity of TiO

Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 850-860 doi: 10.1007/s11783-014-0737-y

摘要: The effect of ion-doping on TiO nanotubes were investigated to obtain the optimal TiO nanotubes for the effective decomposition of humic acids (HA) through O /UV/ion-doped TiO process. The experimental results show that changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the Brunauer-Emmett-Teller surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on HA removal increased when Ag , Al , Cu , Fe , V , and Zn were doped into the TiO nanotubes, whereas such activities decreased as a result of Mn - and Ni -doping. In the presence of 1.0 at.% Fe -doped TiO nanotubes calcined at 550°C, the removal efficiency of HA was 80% with a pseudo-first-order rate constant of 0.158 min . Fe in TiO could increase the generation of ·OH, which could remove HA. However, Fe in water cannot function as a shallow trapping site for electrons or holes.

关键词: TiO2 nanotubes     ion-doping     humic acids     pseudo-first-order     mechanism    

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1221-1230 doi: 10.1007/s11705-023-2298-8

摘要: The vanadium redox flow battery with a safe and capacity-controllable large-scale energy storage system offers a new method for the sustainability. In this case, acetic acid, methane sulfonic acid, sulfonic acid, amino methane sulfonic acid, and taurine are used to overcome the low electrolyte energy density and stability limitations, as well as to investigate the effects of various organic functional groups on the vanadium redox flow battery. When compared to the pristine electrolyte (0.22 Ah, 5.0 Wh·L–1, 85.0%), the results show that taurine has the advantage of maintaining vanadium ion concentrations, discharge capacity (1.43 Ah), energy density (33.9 Wh·L–1), and energy efficiency (90.5%) even after several cycles. The acetic acid electrolyte is more conducive to the low-temperature stability of the V(II) electrolyte (177 h at −25 °C) than pristine (82 h at −2 °C). The –SO3H group, specifically the coaction of the –NH2 and –SO3H groups, improves electrolyte stability. The –NH2 and –COOH additive groups improved conductivity and electrochemical activity.

关键词: vanadium redox flow battery     functional groups     organic additives     energy density     stability    

Utilization of waste vanadium-bearing resources in the preparation of rare-earth vanadate catalysts for

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1793-1806 doi: 10.1007/s11705-022-2191-x

摘要: Recycling industrial solid waste not only saves resources but also eliminates environmental concerns of toxic threats. Herein, we proposed a new strategy for the utilization of petrochemical-derived carbon black waste, a waste vanadium-bearing resource (V > 30000 ppm (10 −6)). Chemical leaching was employed to extract metallic vanadium from the waste and the leachate containing V was used as an alternative raw material for the fabrication of vanadate nanomaterials. Through the screening of various metal cations, it was found that the contaminated Na+ during the leaching process showed strong competitive coordination with the vanadium ions. However, by adding foreign Ce3+ and Y3+ cations, two rare-earth vanadates, viz., flower-like CeVO4 and spherical YVO4 nanomaterials, were successfully synthesized. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier-transform infrared, and N2 physisorption were applied to analyze the physicochemical properties of the waste-derived nanomaterials. Importantly, we found that rare-earth vanadate catalysts exhibited good activities toward the semi-hydrogenation of α,β-unsaturated aldehydes. The conversion of cinnamaldehyde and cinnamic alcohol selectivity were even higher than those of the common CeVO4 prepared using pure chemicals (67.2% vs. 27.7% and 88.4% vs. 53.5%). Our work provides a valuable new reference for preparing vanadate catalysts by the use of abundant vanadium-bearing waste resources.

关键词: petrochemical solid wastes     vanadium recovery     resource utilization     nanomaterials     semi-hydrogenation    

Vanadium and molybdenum concentrations in particulate from Palermo (Italy): analytical methods using

Diana AMORELLO,Santino ORECCHIO

《环境科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 605-614 doi: 10.1007/s11783-014-0703-8

摘要: The main purpose of this work was to develop a reliable method for the determination of vanadium (V) and molybdenum (Mo) in atmosphere particles or aerosols because they can not be readily measured using conventional techniques. For this research, 30 particulate samples were collected from five different stations located at Palermo, Italy. We used the catalytic adsorptive stripping voltammetry and differential pulsed voltammetry to measure V and Mo in atmospheric particulate, respectively. The represented method includes advantages of high sensitivity, high selectivity, simplicity, reproducibility, speed and low costs. The quantification limits for V and Mo are, respectively, 0.57 and 0.80 ng·m . The precision, expressed as relative standard deviation (RSD %), was about 2% for both metals. The mean recoveries of added V and Mo were about 99.5% and ranged from 97% to 101%. Vanadium concentrations in particulate samples collected in Palermo area ranged from 0.57 to 7.7 ng·m , while Mo concentrations were in the range 0.8–51 ng·m . In many cases the concentrations of two elements in the particulate samples fall below the detection limits. The mean concentrations for V and Mo in particulate samples, collected in Palermo area, were respectively 3.1 and 5.9 ng·m .

关键词: vanadium     molybdenum     particulate     voltammetry     Palermo    

Enhanced electrochemical performance of CoNiS@TiCT electrode material through doping of cobalt element

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1440-1449 doi: 10.1007/s11705-023-2333-9

摘要: The composite electrode of CoNiSx and Ti3C2Tx MXene was successfully prepared using a one-step hydrothermal method under the in-situ doping of the cobalt element. The effects of in-situ doping of the cobalt element on the micromorphology and electrochemical performance of the electrodes were investigated. After in-situ doping of the cobalt element, NiS with a needle-like structure was converted into a CoNiSx with petal-like structure. The petal-like CoNiSx with a rough surface was very dense and evenly wrapped on the surface and interlamination of Ti3C2Tx, which helped increase the specific surface area and pore volume of the electrode. Under the identical test conditions, CoNiSx@Ti3C2Tx had a higher specific capacitance and capacitance retention than NiS@Ti3C2Tx. This result indicated that the in-situ doping of the cobalt element promoted the electrochemical performance of the electrode. The energy density of the CoNiSx@Ti3C2Tx/nickel foam (NF)//activated carbon (AC)/NF asymmetric supercapacitor device was 59.20 Wh·kg–1 at a power density of 826.73 W·kg–1, which was much higher than that of NiS@Ti3C2Tx/NF//AC/NF. Three CoNiSx@Ti3C2Tx/NF//AC/NF in series were able to illuminate the light emitting diode lamp for about 10 min, which was higher than the 5 min of three NiS@Ti3C2Tx/NF//AC/NF in series under the same condition. The CoNiSx@Ti3C2Tx/NF//AC/NF with high energy density had better application potential in energy storage than the NiS@Ti3C2Tx/NF//AC/NF.

关键词: MXene     supercapacitor     cobalt doping     structure characterization     electrochemical performance    

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 93-101 doi: 10.1007/s11705-022-2175-x

摘要: Defect construction and heteroatom doping are effective strategies for improving photocatalytic activity of carbon nitride (g-C3N4). In this work, N defects were successfully prepared via cold plasma. High-energy electrons generated by plasma can produce N defects and embed sulfur atoms into g-C3N4. The N defects obviously promoted photocatalytic degradation performance that was 7.5 times higher than that of pure g-C3N4. The concentration of N defects can be tuned by different power and time of plasma. With the increase in N defects, the photocatalytic activity showed a volcanic trend. The g-C3N4 with moderate concentration of N defects exhibited the highest photocatalytic activity. S-doped g-C3N4 exhibited 11.25 times higher photocatalytic activity than pure g-C3N4. It provided extra active sites for photocatalytic reaction and improved stability of N defects. The N vacancy-enriched and S-doped g-C3N4 are beneficial for widening absorption edge and improving the separation efficiency of electron and holes.

关键词: g-C3N4     nitrogen defect     sulfur doping     photodegradation     plasma    

Vanadium metabolism investigation using substance flow and scenario analysis

Fangfang ZHANG, Huiquan LI, Bo CHEN, Xue GUAN, Yi ZHANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 256-266 doi: 10.1007/s11783-013-0585-1

摘要: Vanadium is a vital strategic resource, and vanadium metabolism is an important part of the national socio-economic system of China. This study conducts accounting and scenario analysis on the life cycle of vanadium metabolism in China. Based on the characteristics of vanadium life cycle and substance flow analysis (SFA) framework, we present a quantitative evaluation of a static anthropogenic vanadium life cycle for the year 2010. Results show that anthropogenic vanadium consumption, stocks, and new domestic scrap are at 98.2, 21.2, and 4.1 kt, respectively; new scrap is usually discarded. The overall utilization ratio of vanadium is 32.2%. A large amount of vanadium is stockpiled into tailings, debris, slags, and other spent solids. A scenario analysis was conducted to analyze the future developmental trend of vanadium metabolism in China based on the SFA framework and the qualitative analysis of technology advancement and socio-economic development. The baseline year was set as 2010. Several indicators were proposed to simulate different scenarios from 2010 to 2030. The scenario analysis indicates that the next 20 years is a critical period for the vanadium industry in China. This paper discusses relevant policies that contribute to the improvement of sustainable vanadium utilization in China.

关键词: metabolism     vanadium industry     substance flow analysis     scenario analysis    

Enhancement of open circuit voltage in organic solar cells by doping a fluorescent red dye

Qing LI, Junsheng YU, Yue ZANG, Nana WANG, Yadong JIANG

《能源前沿(英文)》 2012年 第6卷 第2期   页码 179-183 doi: 10.1007/s11708-012-0177-y

摘要: The open circuit voltage ( ) of small-molecule organic solar cells (OSCs) could be improved by doping suitable fluorescent dyes into the donor layers. In this paper, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) was used as a dopant, and the performance of the OSCs with different DCJTB concentration in copper phthalocyanine (CuPc) was studied. The results showed that the of the OSC with 50% of DCJTB in CuPc increased by 15%, compared with that of the standard CuPc/fullerene (C ) device. The enhancement of the was attributed to the lower highest occupied molecular orbital (HOMO) level in the DCJTB than that in the CuPc. Also, the light absorption intensity is enhanced between 400 and 550 nm, where CuPc and C have low absorbance, leading to a broad absorption spectrum.

关键词: organic solar cells (OSCs)     open circuit voltage     fluorescent dye doping     4-(dicyanomethylene)-2-t-butyl-6-(1     1     7     7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)    

Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution

Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 409-416 doi: 10.1007/s11705-017-1689-0

摘要:

A low-cost and high-activity catalyst for oxygen evolution reaction (OER) is the key to the water splitting technology for hydrogen generation. Here we report the use of three solvents, DMF, ethanol and glycol, in the solvothermal synthesis of three nano-catalysts, Co3(VO4)2-I, Co3(VO4)2-II, and Co3(VO4)2-III, respectively. Transmission electron microscope shows Co3(VO4)2-I, II, and III exist as ultrafine nanosheets, ultrathin nanofilms, and ultrafine nanosheet-comprised microspheres, respectively. These Co3(VO4)2 catalysts exhibit OER electrocatalysis, among which the Co3(VO4)2-II shows the lowest onset overpotential of 310 mV and only requires a small overpotential of 330 mV to drive current density of 10 mA/cm2. Due to their high surface free energy, the ultrathin nanofilms of Co3(VO4)2-II exhibits a good immobilization effect with the high electrocatalytic activity for OER.

关键词: Co3(VO4)2     oxygen evolution reaction     electrocatalyst     water splitting    

Vanadium(IV) solvent extraction enhancement in high acidity using di-(2-ethylhexyl)phosphoric acid with

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 56-67 doi: 10.1007/s11705-022-2185-8

摘要: Separation of vanadium from black shale leaching solution at low pH is very meaningful, which can effectively avoid the generation of alkali neutralization slag and the resulting vanadium loss. In this study, coordination mechanism of vanadium in acid leaching solution at low pH was investigated with the intervention of chloride ions. Under the conditions of pH 0.8, di-(2-ethylhexyl)phosphoric acid concentration of 20%, phase ratio of 1:2, and extraction time of 8 min, the vanadium extraction could reach 80.00%. The Fourier transform infrared and electrospray ionization results reveal that, despite the fact that the chloride ion in the leachate could significantly promote vanadium extraction, the chloride ion does not enter the organic phase, indicating an intriguing phenomenon. Among Cl–V, SO42−–V, and H2O–V, the V–Cl bond is longer and the potential difference between coordinate ions and vanadium is smaller. Therefore, VO2+ gets easily desorbed with chloride ions and enter the organic phase. At the same time, the hydrogen ions of di-(2-ethylhexyl)phosphoric acid also enter the water phase more easily, which reduces the pH required for the extraction reaction.

关键词: vanadium     black shale     solvent extraction     high acidity extraction    

Effects of Pd doping on N

Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen

《环境科学与工程前沿(英文)》 2017年 第11卷 第6期 doi: 10.1007/s11783-017-0976-9

摘要: N O is a powerful greenhouse gas and plays an important role in destructing the ozone layer. This present work investigated the effects of Pd doping on N O formation over Pt/BaO/Al O catalyst. Three types of catalysts, Pt/BaO/Al O , Pt/Pd mechanical mixing catalyst (Pt/BaO/Al O +Pd/Al O ) and Pt-Pd co-impregnation catalyst (Pt-Pd/BaO/Al O ) were prepared by incipient wetness impregnation method. These catalysts were first evaluated in NSR activity tests using H /CO as reductants and then carefully characterized by BET, CO chemisorption, CO-DRIFTs and H -TPR techniques. In addition, temperature programmed reactions of NO with H /CO were conducted to obtain further information about N O formation mechanism. Compared with Pt/BaO/Al O , (Pt/BaO/Al O +Pd/Al O ) produced less N O and more NH during NO storage and reduction process, while an opposite trend was found over (Pt-Pd/BaO/Al O +Al O ). Temperature programmed reactions of NO with H /CO results showed that Pd/Al O component in (Pt/BaO/Al O +Pd/Al O ) played an important role in NO reduction to NH , and the formed NH could reduce NO to N leading to a decrease in N O formation. Most of N O formed over (Pt-Pd/BaO/Al O +Al O ) was originated from Pd/BaO/Al O component. H -TPR results indicated Pd-Ba interaction resulted in more difficult-to-reduce PdO species over Pd/BaO/Al O , which inhibits the NO dissociation and thus drives the selectivity to N O in NO reduction.

关键词: NOx storage reduction     Pt/BaO/Al2O3     Pd doping     N2O formation     Optimization    

标题 作者 时间 类型 操作

Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution

Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong

期刊论文

Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent

Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu

期刊论文

Mechanical properties of vanadium-alloyed austempered ductile iron for crankshaft applications

期刊论文

Highly efficient and selective removal of vanadium from tungstate solutions by microbubble floating-extraction

期刊论文

Effect of metal ion-doping on characteristics and photocatalytic activity of TiO

Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI

期刊论文

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium

期刊论文

Utilization of waste vanadium-bearing resources in the preparation of rare-earth vanadate catalysts for

期刊论文

Vanadium and molybdenum concentrations in particulate from Palermo (Italy): analytical methods using

Diana AMORELLO,Santino ORECCHIO

期刊论文

Enhanced electrochemical performance of CoNiS@TiCT electrode material through doping of cobalt element

期刊论文

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

期刊论文

Vanadium metabolism investigation using substance flow and scenario analysis

Fangfang ZHANG, Huiquan LI, Bo CHEN, Xue GUAN, Yi ZHANG

期刊论文

Enhancement of open circuit voltage in organic solar cells by doping a fluorescent red dye

Qing LI, Junsheng YU, Yue ZANG, Nana WANG, Yadong JIANG

期刊论文

Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution

Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao

期刊论文

Vanadium(IV) solvent extraction enhancement in high acidity using di-(2-ethylhexyl)phosphoric acid with

期刊论文

Effects of Pd doping on N

Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen

期刊论文